
Master of Science in Informatics at Grenoble
Master Informatique

Specialization Distributed Infrastructures

Bridging the Performance Gap
Between Converged RDMA Dataplane

and Kernel-Bypass
Ilya Meignan--Masson

September 4th, 2023

Research project performed at Barkhausen Institut

Under the supervision of:
Michael Roitzsch and Maksym Planeta

Defended before a jury composed of:
Bruno Raffin

Martin Heusse
Olivier Richard
Thomas Ropars

September 2023

Abstract

While kernel-bypass is often considered an essential feature of high perfor-
mance networks, it breaks the traditional OS architecture and prevents a fine-grain
control of the kernel over the communications. Converged RDMA Dataplane
(CoRD) is an attempt at solving this problem by giving back the control over dat-
aplane operations to the kernel effectively enabling a better control and utilisation
of the network resource. However, CoRD suffers from a massive overhead com-
pared to its kernel-bypass counter-part. CoRD was implemented by porting the
user library code inside the Infiniband driver and thus their performance should
be equivalent but our measurements show that the overhead exceeds the delay im-
posed by a system call. In this work, we identified the causes of this overhead
and improved the driver performance by up to 65% to reach a sub-microsecond
overhead compared to kernel-bypass.

Acknowledgements

I would like to thank all the people that contributed directly or indirectly to this
work :

• Maksym Planeta, for his invaluable and seemingly limitless supply of advice
and directions both during the research and for the writing of this thesis.

• Michael Roitzsch, Olivier Richard and the other members of the jury.

• the members of the TUD-OS team and especially Tianhao Wang for the nice
and interesting discussions.

• my friends and family for the long distance support.

• and a very special candle that brightens my life even across continents.

Résumé

Bien que le contournement du noyau (kernel-bypass) soit souvent considéré
comme une caractéristique essentielle des réseaux à haute performance, ce meca-
nisme ne rentre pas dans l’architecture traditionnelle d’un système d’exploitation
et empêche le noyau de contrôler avec précision les communications. Converged
RDMA Dataplane (CoRD) tente de résoudre ce problème en redonnant au noyau
le contrôle des opérations du dataplane, ce qui permet un meilleur contrôle et une
meilleure utilisation des ressources du réseau. Cependant, CoRD souffre d’un sur-
coût important par rapport à la version implementant le contournement du noyau.
CoRD ayant été implémenté en portant le code de la bibliothèque utilisateur à l’in-
térieur du pilote Infiniband, leurs performances devraient être équivalentes. Cepen-
dant nos expérimentations montrent que le surcoût dépasse le délai normalement
imposé par un appel système. Dans ce travail, nous avons identifié les causes de
cet overhead et amélioré jusqu’à 65% les performances du pilote pour atteindre un
surcoût inférieur à la microseconde par rapport au kernel-bypass.

Contents

Abstract i

Acknowledgements i

Résumé i

1 Introduction 1

2 Background 3
2.1 Background . 3

2.1.1 The Linux kernel . 3
2.1.2 Infiniband . 3

3 Problem statement 7
3.1 Problem statement . 7
3.2 Related work . 7

4 Towards a more efficient Infiniband Linux driver 11
4.1 Turning off security vulnerability mitigations 11
4.2 Using shared memory . 13
4.3 Calling the driver functions directly . 16
4.4 Passing the queues pointers from userspace 17

5 Evaluation and Discussion 19
5.1 Experimental setup . 19
5.2 Evaluation . 19
5.3 Discussion and Future work . 25

6 Conclusion 27

Bibliography 29

1
Introduction

Infiniband is a networking standard widely used in clusters nowadays for its very low latency
and high throughput, in the order of micro-seconds for the latency and in the hundreds of giga
bits per second for the bandwidth. The current user-level library relies on kernel-bypass to reach
this level of performance. However, as High Performance Computing and Cloud architectures
and especially network are getting closer, enabling efficient OS-level control over networking
dataplane operations seems mandatory to reach this convergence. To do so, Converged RDMA
Dataplane (CoRD) [22] has been proposed to put the kernel back in the control path of data-
plane operations through a system call and a kernel-level driver.
As Miemietz et al. showed, a normal system call takes around 300 ns. Since CoRD’s imple-
mentation simply ports the user-level pipeline into the kernel, the only performance overhead
should come from the system call. However, we measured that CoRD has an overhead of up to
2 micro-seconds compared to the library with kernel-bypass. In this work, we try to explain the
difference between the overhead of a system call and the overhead of CoRD and to eliminate
what causes the extra overhead.
To do so, we analyse the performance of micro-benchmarks looking for a source of overhead.
Once identified, we remove it and we restart the analysis until we find all the sources. Using
this methodology, we identified and removed 4 parts of the pipeline that were causing a perfor-
mance degradation resulting in an improvement of up to 65% of the overhead. The first part
includes some vulnerabilities mitigations, which, when disabled, remove a significant over-
head on the system call performance of affected systems. The second part covers the copying
of user-level memory into the kernel that can be avoided using a shared memory region. The
third part simplifies the dispatching of functions inside the driver as its architecture, which
hasn’t been designed for this, was inducing a performance overhead. The final parts improves
the mechanism of passing one of the parameter by keeping the kernel pointer to the object in
the user-level library.
With those optimisations, the overhead of CoRD is reduced to 600-800 ns which means that
there is still an extra overhead compared to a system call. We believe that removing this extra
overhead would require to re-design the kernel Infiniband driver for this purpose. Another op-
tion could be to try to reduce the overhead of the system call itself but this would also require
a re-architecting of the system call interface.
This thesis is organised as follow. First, we provide some background on the Linux kernel and
on the Infiniband standard in chapter 2. Then we present the problem and detail the related
work in chapter 3. Chapter 4 details our exploration of the kernel driver performance while
chapter 5 presents our evaluation and the future work. Finally we conclude in chapter 6.

2
Background

2.1 Background

2.1.1 The Linux kernel

One of the role of the kernel in an Operating System (OS) is to isolate application from each
others with virtual memory. Since the kernel has access to the address space of all the applica-
tions, this also requires a strict separation between user and kernel execution context and virtual
memory. This is achieved by leveraging CPU protection rings for code execution and with the
support of the Memory Management Unit (MMU) for memory protection. The kernel exposes
its interface to applications via system calls (syscall). The CPU changes its current execution
ring during a syscall to be able to execute kernel code.

Another role of the kernel in an OS is to abstract the hardware resources and to provide
an interface for the applications to interact with them. The Linux kernel supports a very large
range of hardware devices through a evenly large collection of drivers. To avoid having to
load into kernel memory the code of all the drivers, the mechanism of modules was created.
Modules can be compiled separately from the rest of the kernel sources and loaded dynamically
at runtime which aims at keeping the amount of useless code loaded in memory as little as
possible. In the traditional OS architecture, access to device is only possible by the usage of
syscalls. Commonly used operations have led to the creation of dedicated syscalls like read or
write while the general-purpose syscall ioctl is meant for device-specific operations.

The switch between user execution context and kernel execution context usually called
mode switch has a significant overhead. On top of the direct cost of saving the context, switch-
ing the protection ring and computing the address of the syscall function, the number of TLB
and cache misses increases due to the break in memory locality. In the end, the cost of a syscall
can be estimated to a few hundreds of nanoseconds ([25]).

2.1.2 Infiniband

Infiniband is a high performance network communication standard massively used in High
Performance Computing (HPC) systems (241 systems of the TOP500 in June 2023 [6]) due
to its guarantees on high throughput and low latency. Nvidia produces Infiniband network
card called Host Channel Adapter (HCA) that connects to other HCAs via Infiniband switches.
Linux supports Infiniband cards with a driver since 2005. The main userspace library available

Connection Datagram
Reliable RC RD

Unreliable UC UD

Table 2.1: Types of possible exchanges

for applications is the libibverbs library ([3]). Operations on the network card are divided
between control-plane, e.g. connection creation/closing, and data-plane operations, e.g. send,
receive, read, write. Data-plane operations exchange messages over the network. On top of
the normal send() and recv() primitives, Infiniband cards support Remote Direct Memory
Access (RDMA) operations. RDMA allows an application to first register a memory region in
the HCA. This region can be accessed directly by the card without the CPU involved. Infiniband
supports more than 4 types of exchanges some of which are presented in table 2.1 depending
on the level of service and the error-recovery mechanisms required by the application.

Internally, the Infiniband HCA uses queues to handle the messages. During dataplane op-
erations, three queues are directly involved, the send queue (SQ), the receive queue (RQ) and
the the completion queue (CQ). The first two are grouped in a queue pair (QP). Dataplane op-
erations are composed of three primitives : post_send(), post_recv() and poll_cq() that
interact with those queues. Fig 2.1 shows the sequence of operations during a Send operation.
This figure assumes that the necessary control-plane operations have been executed and they
are not presented. The Send operation begins when the sender, respectively the reciever, calls
post_send(), resp. post_recv(). Those function will place a work request (WR) either
in the SQ or in the RQ depending on the function. The HCA will handle the transfer of the
data. After calling post_send()/post_recv(), both the reciever and the sender will contin-
uously call poll_cq(). When the reciever’s HCA recieves the message, it will place the data
at the memory address registered during the call to post_recv() and will place a Completion
Queue Event (CQE) in the CQ. Similarly, the reciever’s HCA will send an acknowledgement
to the sender’s HCA which will also create a CQE for the post_send() operation. The two
applications are notified of the completion when poll_cq() returns an element.

Sender Receiver

data

ACK

post_send() post_recv()

poll_cq()

poll_cq()

Figure 2.1: Sequence of operations for a Send request

The libibverbs library uses 3 mechanisms during data-plane operations to achieve high

4

throughput and low latency : zero-copy, polling and kernel-bypass.

• Zero-copy, or rather no unnecessary copy, means that the message data is only copied
once from the application memory to the HCA memory and not once more inside the
driver.

• Polling means that the application should poll for the completion of a request instead of
relying on interruptions.

• Kernel-bypass means that the kernel gives the control over the HCA to the application
thus removing the need for a syscall.

Those three mechanisms are mandatory to reach the highest level of performance. However
kernel-bypass, as [22] shows, breaks the traditional OS architecture while being the least im-
pactful on performance. Kernel-bypass prevents a fine-grain of the OS over the network oper-
ations.
Due to their relative proximity, the idea to move HPC and Cloud system architectures closer
to one another have been proposed in recent years. HPC systems could benefit from increased
elasticity and resource utilisation while Cloud architectures already have those features but re-
quire to be re-fitted to handle HPC workloads.
However, Cloud features like elasticity or resource sharing require the control of the OS over
the system including the network. Kernel-bypass prevents mechanisms like OS-level schedul-
ing, firewalling or live-migration. Converged RDMA Dataplane (CoRD) is an attempt to solve
this issue.

3
Problem statement

3.1 Problem statement

We conducted a study on the latency of sending a message one-way on the L system described
in section 5.1 using CoRD compared to using the baseline with multiple message size. Figure
3.1 present the result of this study. We can see that CoRD has a latency overhead of around
2 µs for the Reliable Connection (RC) communication and around 1.7 µs for the Unreliable
Datagram (UD) communication.

CoRD was designed by porting the user-library implementation of the dataplane operations
into the kernel driver. This means that the kernel driver pipeline performance should be equiv-
alent to the performance of the library plus the system call overhead. However, this study [25]
showed that the overhead of an empty system call on a similar system as L is around 300 ns.
This figure is significantly higher to the 2 µs that we measured.
This work thus tries to explore the reasons behind this difference in performance. The goal is
to find parts of the pipeline that are causing an overhead and to remove them if possible.

3.2 Related work

The use of kernel-bypass networking in the Cloud environement, i.e. through the use of frame-
work like DPDK [1], has been shown to prevent a number of features necessary to Cloud
platforms. Among those features are the virtualisation of NICs ([15], [24]), a fine-grain control
of the resources ([19]) and the monitoring of applications ([7]).
On HPC systems, a kernel controlled network enables a more efficient co-location of appli-
cations through a better scheduling of oversubscribed MPI ranks ([9], [11]) or application-
oblivious memory pooling over the network [27] that can reduce memory under-utilisation. In
general, it allows for more diverse workloads and improved resource utilisation.

One way of bringing this level of control to dataplane network operations is to offload the
logic to the network card. In this case, it requires either a SmartNIC ([10], [29], [30]) or hard-
ware modifications ([21], [28]). However, these changes are costly which motivates the choice
to solve the problem in software. In this case, the problem with user-level networking is that it
is usually application specific and lacks kernel control whereas the problem with kernel-level
networking is that it is usually less efficient. One solution is to use a different OS architecture

Send/RC Send/UD

1 16 256 4096 1 16 256 4096

0.0

0.5

1.0

1.5

2.0

Message size (Bytes)

La
te

nc
y

ov
er

he
ad

 (
µs

)

Figure 3.1: Comparing the overhead of the latency of a one way communication using the
CoRD version on the L system

to solve one of those issues. On one hand, the micro-kernel architecture includes user-level
networking provided to the applications and controlled by the OS ([23]). On the other hand,
multi-kernel architectures uses a specific lightweight kernel for performance sensitive opera-
tions while keeping a full weight kernel (usually Linux) to provide the applications with the
abstractions and the APIs that they expect ([13], [14]). Micro-kernels based architectures are
becoming more common on Cloud platforms since they provide other features like online re-
configuration but it is usually less efficient for HPC workloads. On the other hand, multi-kernel
architectures have also failed to become popular in HPC systems perhaps due to their complex-
ity and for some of them their lack of compatibility with existing application. In the end, the
most common OS architecture is the monolithical kernel based OS most of the time represented
by a Linux distribution. This is why we decided to focus our study on CoRD [22] which tries
to give back the control of dataplane Infiniband operations to the Linux kernel.

To our knowledge, this work is the first one to explore the performance of data plane opera-
tions inside the Infiniband driver of the Linux kernel. However, in the recent years, the problem
of improving the performance of kernel-level I/O or network operations has been extensively

8

studied. Works focusing on storage and I/O in general are also relevant here because they are
very similar both in the problems and in the order of magnitude of the latency considered.

Most works focus on improving the kernel/user interface for any high performance I/O op-
eration. In Linux, there are only two ways to communicate between user space and kernel
space, syscalls which can be batched ([12]) or intrisincally improved in software ([25]) or in
hardware ([20]). The second option is memory-mapped I/O operations ([26]).

Offloading some parts of the user-level library in the kernel is another option. This can be
done either by leveraging Linux mechanisms like eBPF ([32]) or XDP ([17]), with a custom
automatic offloading mechanism ([33], [25], [31]).

However, to our knowledge, only [16] explored the option of improving the driver itself in
this case by re-architecting the storage stack.

4
Towards a more efficient Infiniband Linux

driver

To improve the performance, we identify parts that are causing an overhead by studying the per-
formance of the CoRD pipeline using timing analysis or other statistical tools like flamegraphs.
Table 4.1 presents the percentages of sample taken in each of the main function of the driver.
Using this flamegraph we could identify 4 groups of functions that were adding an overhead.
We also re-generated flamegraphs as we removed those parts to see how the performance had
evolved. As presented in Table 4.2, the security mitigations implemented on syscall return are
the biggest performance overhead so this is the first optimisations. The second target is the
copying of the user-level memory to the kernel represented by the calls to copy_from_user()
and the calls to kmalloc(). The third target is the overhead imposed by the dispatching of the
dataplane functions. The fourth and final target is the design choice of keeping an index to the
queues on the user-level library and not directly the kernel pointer causing some processing to
recover this pointer.

Function(s) % of CPU time
entry point of the hardware driver (mlx5_post_send, actual work) 8.82%

exit point of the core driver (ib_uverbs_post_send) 36.48%
entry point of the core driver (ib_uverbs_ioctl) 57.8%

entry point of the kernel 88.85%

.

Table 4.1: Functions inside the kernel with their corresponding % of CPU time during the
write_bw benchmark summarized from the flamegraph generated using [2]. Each function
percentage is included in the percentage of the function below it.

For each section, we start by detailing the target and the idea of the optimisation. Then we
also describe how we implement it.

4.1 Turning off security vulnerability mitigations

Opening the side-channel Pandora box.

Function(s) % of CPU time
exit to user-space 18.87%

copying and allocating related functions 15.76%
dispatching of the requested operation 13.56%
Functions to recover the queues pointer 9.38%

post_send function on the mlx5 driver (actual work) 8.82%

.

Table 4.2: Groups of functions that we extracted from the flamegraph summarized in Table 4.1.
The last line contains the driver function that actually does the operation on the HCA.

Idea

The kernel of an OS is important target for security attacks. Any attack that manages to get the
control of the execution while in supervisor mode has access to the whole system whereas a
compromised user-level application can be contained or handled by the kernel.
In recent years, the linux kernel has been hardened against a series of micro-architectural side
channel vulnerabilities . These attacks include Meltdown, Spectre and Microarchitectural Data
Sampling (MDS) but also other vulnerabilities like Retbleed or Special Register Buffer Data
Sampling (SRBDS) which are based respectively on Spectre and MDS. We note here that we
are only describing here the mitigations that induce an overhead to a mode switch.
Meltdown, which allows a process to access memory belonging to the kernel or to other pro-
cesses bypassing the usual security checks, was mitigated for the kernel memory by the imple-
mentation of Kernel Page Table Isolation (KPTI). The isolation is enforced by only keeping a
minimal amount of kernel pages in a user-level process page table, except the pages necessary
to execute syscalls and other user/kernel communication. This mitigates the vulnerability as
the user-level process is completely unaware of most of the kernel pages. In turn, this means
that the page table has to be changed during a mode switch thus inducing most of the cost of a
regular context switch; TLB-flushing and page-table switching.
Spectre is an entire class of side channel attacks exploiting speculative execution and branch
prediction features of most modern CPUs. We focus here on the bound check bypassing ver-
sion, called in Linux version 1. Some CPUs speculate the execution of some branches even
without checking if the accessed memory is in a valid range. Those speculative memory ac-
cesses induces the loading of memory in the CPU without privilege or validity checks and
created potential side channels with which an attacker can access otherwise protected memory.
The mitigation for this attack in the Linux kernel is done by adding an LFENCE barrier in the
copy_from_user function which serializes all the load instructions that were issued before the
barrier. This induces an overhead on the aforementioned function which is heavily used in the
module code.
MDS is similar to Spectre as it exploits speculative access to memory. In the case of MDS,
the target are buffers used internally by the CPU for speculative execution. It is mitigated
by explicitly flushing those buffers during a mode switch, hence adding an overhead on the
enter_from_user_mode() and exit_to_user_mode() functions.

The vulnerabilities affecting our two experimentation systems are presented in Table4.3. Sat-
urn is vulnerable to all of the vulnerabilities and is running the mitigations whereas Oracle is
only affected by Spectre(v1).

12

System MDS Meltdown Spectre (v1)
L Vulnerable: Clear CPU

buffers attempted, no mi-
crocode; SMT disabled

Mitigation: PTI Mitigation: usercopy/swapgs
barriers and __user pointer
sanitization

O Not affected Not affected Mitigation: usercopy/swapgs
barriers and __user pointer
sanitization

Table 4.3: Security vulnerabilities for the Saturn and the Oracle profile as presented by sysfs
in the /sys/devices/system/cpu/vulnerabilities directory

Implementation

This optimisation is the easiest to implement. We simply modified the kernel build configura-
tion and add CONFIG_CMDLINE="mitigations=off" to turn off MDS, Meltdown and Spectre
mitigations. This kernel command line parameter turns off more mitigations than the ones
stated but only the one stated have a significant impact on the performance of the functions that
we target.

4.2 Using shared memory

Spoiling the copying and malloc-ing party.

After removing the mitigations, we identified that a significant portion of the system call is
spent in memory allocation and copy operations. These operations come from the syscall inter-
face and are not necessary in the kernel-bypass pipeline. In this section, we try to remove those
operations. However, removing those operations implies to lower the security of the OS, we
propose a design based on a shared memory region that removes the need for those operations
without introducing security flaws.

Idea

As we described in the previous section, the interface between the kernel and a user-space pro-
cess is an especially critical point in terms of security for the kernel. For memory exchanges,
Linux kernel developers must use the functions defined in uaccess.h (e.g. copy_from_user,
copy_to_user, etc...) when accessing user-level memory.
User-level processes could try to attack the kernel by giving it an address in the kernel section
of the address space, potentially tricking the kernel into rewriting its own memory. Another
attack could be to provide a faulty address, e.g. a NULL pointer. In this case, without proper
checking, the use of such address could lead to a failure which, due to the monolithic archi-
tecture of the kernel, would result in a complete kernel crash. It is worth noting that some
recent CPU implement two hardware features, Supervisor Mode Access Prevention (SMAP)
and Supervisor Mode Execution Prevention (SMEP). These features provides hardware sup-
port to prevent kernel access (or execution) of user-level memory. They are implemented using
flags in a Control Register. They are turned on at boot time, thus require an explicit instruction
to turn them off, preventing more unwanted user-memory access or execution.

The uaccess functions contain checks preventing these attacks as well as mechanisms to dis-
able temporarily SMAP if necessary. This obviously adds an overhead compared to accessing
directly user-level memory. Other induced cost can be the extra memory needed by two allo-
cations, on the user heap and on the kernel heap as well as the potential cache miss caused by
the change in the address of the same value.
The idea of this optimisation is thus to access as much as possible the user-level library mem-
ory directly. To do this efficiently while preventing security issues, a memory region must be
shared between the kernel and the application.

Implementation

To understand our implementation of the optimisation, we have to describe the architecture of
the driver that we modified.
When calling the driver using ioctl, the execution flow can be split in two phases. A first phase
where the module dispatches the requested operation and a second one dedicated to deserial-
izing the request and calling the hardware driver function that actually executes the request.
Figure 4.1 presents this architecture with our modifications. The functions of the first phase are
shared across any kind of request (even control plane operations) while each request has a dif-
ferent function for the second phase. Therefore, we need a fast branch in the first phase along
the original one while, for the second phase, we can directly modify the three functions of the
critical path (ib_uverbs_post_send, ib_uverbs_post_recv and ib_uverbs_poll_cq).

uverbs_ioctl

deserialiser
without copy

–
fast branch

deserialiser
with copy

Handlers
INVOKE_WRITE ...

uverbs_poll_cq

without copy
uverbs_post_send

without copy
uverbs_post_recv

without copy
uverbs_create_qp ...

Kernel space

User space

shared
memory
region user

memory

Figure 4.1: Architecture of the driver

14

1 struct ib_uverbs_ioctl_hdr {
2 __u16 length;
3 __u16 object_id;
4 __u16 method_id;
5 __u16 num_attrs;
6 __aligned_u64 reserved1;
7 __u32 driver_id;
8 __u32 reserved2;
9 struct ib_uverbs_attr attrs[];

10 };

Excerpt 4.1: Detail of the original ib_uverbs_ioctl_hdr structure

When an application calls one of the library function, the library serializes the requests argu-
ments. It then transfers the control to the module using the ioctl syscall. ioctl takes two
arguments, one for a file descriptor and one for a pointer. This second arguments is casted to a
pointer to a structure of type ib_uverbs_ioctl_hdr. The fields of this structure can be found
in Listing 4.1.

To implement the branching that we described at the beginning of this section, we added a
boolean field called use_fastcall to the structure presented in Listing 4.1. The entry point
checks this field and branches accordingly in the fast path or not. In the fast path, the request
is not copied from user memory but simply passed to the next function. To do so, we need to
disable temporarily SMAP by using the stac() function which, if the CPU supports SMAP
will set the Alignment Check (AC) flag of the EFLAGS, stored in the Control register 4 (CR4)
of the CPU. This flag is then cleared upon return to user mode with the clac() function.
For the function of the second phase, we modified them so that they would use pointers to the
relevant attributes. As an example, Listing 4.2 show the relevant parts of the ib_uverbs_poll_cq
function before and after the modifications. We can see that the copying of the request and of
the response are replaced by the use of a pointer respectively to the inbuf and the outbuf field
of the ucore attribute. The exact same modification is done on the ib_uverbs_post_send()
and the ib_uverbs_post_recv() functions.

1 // Before
2 struct ib_uverbs_poll_cq req;
3 struct ib_uverbs_poll_cq_resp resp;
4 copy_from_user(&req, attrs->ucore.inbuf, min(attrs->ucore.inlen, req_len));
5 copy_to_user(attrs->ucore.outbuf, &resp, sizeof resp);
6 // After
7 struct ib_uverbs_poll_cq *req = (struct ib_uverbs_poll_cq*)attrs->ucore.inbuf;
8 struct ib_uverbs_poll_cq_resp *resp = (struct ib_uverbs_poll_cq_resp*)attrs->ucore.outbuf;

Excerpt 4.2: Detail of the ib_uverbs_poll_cq function before and after the optimisation

Contrary to poll_cq which does not need to call kmalloc during its execution, the post_send
and post_recv allocate objects of type ib_send_wr, respectively ib_recv_wr in order to fit
the data provided by the library. We cannot simply use the pointer in this case because the type
of the work request depends on the type of message that is being processed, e.g. rdma, atomic,
etc. and a different structure must be used in each case. Therefore, we decided to allocate on
the stack one object of each type and use it first to avoid the allocation. If multiple work request
are being processed in the same call to post_send or post_recv, then the work request after
the first one are allocated as in the original version.

Another important point of the implementation is the shared memory region. As we cur-
rently describe it, the driver simply exposes the kernel to the kind of attacks that we described in
the previous section (invalid memory access, etc.). In order to protect the kernel while keeping
the performance improvement that results from accessing user-memory directly, a per-thread
shared memory region may be used. For our implementation, we simply allocated a large re-
gion of user memory (8KiB because the largest payload is 4KiB and for alignement purposes).
The requests are then passed to the driver on this memory region.

4.3 Calling the driver functions directly

Geodesic considerations.

Idea

We described in Section 4.2 that the execution flow in the module is split into two phases. To be
more precise, in the original version, the header object passed to the module does not contain
the id of the function that is requested. This identifier is rather passed as one of the attributes
stored in the flex array at the end of the header. In order to reach the requested function and
the second phase, the first phase ends by calling one of the several handlers. There is one for
each broad type of function, e.g. INVOKE_WRITE, INFO_HANDLES, QUERY_PORT, etc., which
does some processing depending on the type and then calls the requested function. The address
of those handlers is stored in a radix_tree. Figure 4.2 presents the new architecure with our
optimisation.

uverbs_ioctl

deserialiser
fast branch

operations from
the handler

deserialiser
with copy

Handlers
INVOKE_WRITE ...

uverbs_poll_cq

without copy
uverbs_post_send

without copy
uverbs_post_recv

without copy
uverbs_create_qp ...

Kernel space

User space

shared
memory
region user

memory

Figure 4.2: Architecture of the driver

16

This architecture is necessary to provide backward compatibility with the invocation of the
module with the write syscall. When calling with write, the execution enters the module
directly at the second phase in the correct function. The idea of this optimisation is then to
include the id of the requested function in the header passed to ioctl.

Implementation

The implementation of this optimisation is straight forward. We add a field in the ib_uverbs_ioctl_hdr
structure. Since we already added a field on this structure for the previous optimisation, the fi-
nal version can be found in Code 4.3.

1 struct ib_uverbs_ioctl_hdr {
2 __u16 length;
3 __u16 object_id;
4 __u16 method_id;
5 __u16 num_attrs;
6 __aligned_u64 reserved1;
7 __u32 driver_id;
8 __u32 reserved2;
9 ib_uverbs_cmd_verbs __u8 use_fastcall; // from previous optimisation

10 ib_uverbs_cmd_verbs __u8 fastcall_method; // added
11 struct ib_uverbs_attr attrs[];
12 };

Excerpt 4.3: Detail of the ib_uverbs_ioctl_hdr structure after our modifications

The entry point of the driver then reads this field and dispatches to the function of the second
phase directly. The handlers are not only dispatching, they also do some processing that we
had to move to the functions of the first phase. However, this move was easy to do since we
already had the fast path created at the previous optimisation.

4.4 Passing the queues pointers from userspace

The beginning of wisdom is to call things by their proper name

The final target of optimisation is the overhead caused by the passing the message queues by
handle which in turn imposes some processing to recover the pointer to the queue. Exposing
the kernel pointer to userspace introduces a security vulnerability.

Idea

For isolation purposes, each application needs to create its own queues and then pass them as
arguments to post_send(), post_recv() and poll_cq() during a communication. However,
in the original version of the module, the driver only returns a handle, an identifier of the queue,
to the library when creating the queues. While this provide security because it hides the true
address, it requires some processing in the module to recover the address from the handle.
Another aspect of this processing that the reference to all the Infiniband objects are counted
and kept up to date. This adds an overhead but is necessary in order to prevent the driver from
leaving unused memory in the kernel heap. Because the idea of this work is to explore the
parts that are degrading performance and not to design a secure system, we do not implement

the reference counting on the kernel address. The idea of this optimisation is then simply
that the user-space applications gets the pointer to the queues and passes this pointer to the
communication functions.

Implementation
The implementation of this optimisation is two fold. First, the library must receive the pointer
to a queue when it is created and thus the module should return it. Then the library should pass
the pointer and the module correctly use it.

To return the queue kernel pointer to userspace, we used the same mechanism that returns
the handle. The library calls the driver function with a syscall and passes a pointer to user-
memory where the driver should write the requested value. In the case of the kernel pointer,
the library stores the value as a 64 bits integer. When calling dataplane operations, the queue
pointer replaces the handle. Once inside the driver, only the functions of the second phase are
changed to simply use the value as a pointer instead of calling rdma_lookup_get_uobject
and rdma_lookup_put_uobject which were used previously.

18

5
Evaluation and Discussion

5.1 Experimental setup
We use two systems for our evaluation, a local system L and a remote system O hosted on the
Oracle Cloud.
L involves two servers with a Intel(R) Core(TM) i5-4590 CPU with a base frequency of
3.3GHz, 16 GB of DDR3 memory and equiped with an Infiniband 100Gbps network card. They
are connected directly with a special Infiniband cable. O is deployed using BM.Optimized3.36
bare-metal compute shapes availble for the Oracle Cloud ([4]). Those shapes are provisioned
with an Intel Xeon 6354 with a base frequency of 3GHz, 512 GB of DDR4 memory and with
an Infiniband 100Gbps network card. Turbo mode and Hyperthreading are disabled for the
experiments.

On the sofware side, we use two different environment, the baseline with kernel-bypass and
CoRD. Kernel-bypass, or baseline in the remaining of this thesis uses an unmodified Linux
kernel at revision 6.2-rc7 as well as the libibverbs library [3]. CoRD is the version used in
([22]) with minor bug fixes. It bypasses the libibverbs library by triggering an ioctl syscall for
data-plane operations. On the kernel side, those operations have been ported from user-space
making so that all the operations go through the kernel-driver.
For the evaluation, we use the perftest benchmark suite [5]. Those benchmarks are meant
to evaluate the performance of Infiniband operations either in terms of latency or in terms of
bandwidth. Other related metrics like the message rate are also measured. The benchmarks
exchange a message filled with random data back and forth between a client and a server. The
size of the message and the Infiniband operation (e.g. Send, RDMA Write, RDMA Read, etc..)
are some of the parameters.
During the experimentations, we include in the output various labels like commit hashes or
hardware configuration allowing to repeat the experiment in the same conditions.

5.2 Evaluation
On top of the measurements that we realised during the implementation part and that guided
our exploration, we also conducted an experiment that present the result of the successive op-
timisations compared to the original CoRD. We measured the latency with the latency class of
perftest benchmarks [5]. We realised the experiment with 4 sizes of messages and with all 6

version, the kernel-bypass baseline, CoRD and our 4 optimisations. Each optimised version
contains the previous optimisations which means that "Direct pointer" represents the ver-
sion with all our optimisations. We repeated 5 times each configuration and we plotted the
latency overhead compared to the baseline. Figure 5.1 and 5.2 present those results respec-
tively for system L and for system O.
We can see that the successive optimisations always improve the performance on all configura-
tions. The overhead has been reduced by up to 1.36 µs between CoRD and the version with all
our optimisations. The smallest improvement is on system O at 4KiB message size with only
0.511 µs of reduced overhead. Another interesting point is that we see the difference between
system L and O in term of security vulnerabilities in the results. The improvement yielded
by the first optimisation is significant on system L, it is even the largest improvement but it
is not even significant for many configurations on system O. The improvement of the second
optimisation seems significantly equal on both system around 0.4 µs. Optimisations 3 and 4
give smaller improvements on both systems. On L, up to 200 ns and 100 ns respectively. On
O, the difference between "Shared region" and "Fast dispatch" on one side and "Fast
dispacth" and "Direct pointer" on the other side is not even significant for most configu-
rations. However, "Direct pointer" is always significantly better than "Shared region".
Overall, the overhead has been reduced by up to 65% on L, from 2µs to 0.7 µs and by up to
45% on O, from 1.6 µs to 0.9 µs.

We also realised an experiment to measure the maximum bandwidth when using the differ-
ent versions. Once again, we measured 4 different sizes of message and we plotted the relative
overhead with 1 being the baseline. Figure 5.3 and 5.4 present the results respectively for sys-
tem L and for system O. Confidence intervals are ommited because they are not big enough.
First, we can see that the two system do not have the same scaling with the message size. L has
a similar relative performance for all the message sizes up to 256B. The relative bandwidth is
small, between 15% of the baseline for CoRD to 30% of the baseline for the version with all
our optimisations. For 4KiB, the performance of the baseline decreases significantly and thus
the relative performance increases sharply. With all our optimisations, the bandwidth reaches
around 90% of the baseline performance. On the other hand, on O, the performance does not
differ significantly across the different message sizes. CoRD is at around 35% of the baseline
while the version with all our optimisations is between 50 and 60% with the only outlier being
with RC at 4KiB at 70% of the baseline.

We also decided to generate a flamegraph in the same conditions as the one that we pre-
sented at the start of our study but with the version with all our optimisations. The results are
presented in Table 5.3 with a recall of the original percentages with CoRD. The main conclu-
sion that can be made from this comparison is that we see here the effect of our optimisations.
The entry (and exit) point of the kernel has decreased by around 20% which corresponds to the
removal of the mitigations. ib_uverbs_post_send has also decreased by around 15% which
is due to the use of the shared memory region which removes all the copy. However, we can
see that the hardware driver function percentage of CPU time has not increased this much, only
4 %. When looking at the full flamegraph, we can see that the depth of the call graph has
decreased due to our optimisations. However, the numbers presented in Table 5.3 show that we
have not decreased the overhead of the core driver enough so that the hardware driver represent
the majority of the time (like in the kernel-bypass version).

20

Send/RC Send/UD

1 16 256 4096 1 16 256 4096

0.0

0.5

1.0

1.5

2.0

Message size (Bytes)

La
te

nc
y

ov
er

he
ad

 (
µs

) Version

CoRD

No mitigations

Shared region

Fast dispatch

Direct pointer

Figure 5.1: Comparing the overhead of the latency of a round trip using the original CoRD and
the successive combinations of optimisations on system L.

According to the Infiniband specification ([18]), the size of the header of a normal RC packet,
containing neither a RDMA nor an atomic operation, is 78 bytes. For a 4 bytes message, this
produces a total packet size of 656 bits. Considering a 100 Gbps Infiniband network card, this
means that the maximum number of packets of this size that can be handled by the card is
100∗230/656 ≈ 163 680 156 pps (packet per second). This leaves only 1/163 680 156 ≈ 6
ns to process each packet. For a 4096 bytes message (i.e. the maximum payload size for a UD
communication), the CPU should not spend more than 300 ns per packet in order to reach the
maximum bandwidth of the network card.
We decided to compare those theoretical numbers with our experimental results. The band-
width benchmarks include a message rate metric. From this metric, we can compute the time
per packet as we did in the previous paragraph. We computed the time per packet using the
same results presented in the previous paragraph. The results are presented in Table 5.1 and
5.2 respectively for system L and O. Compared to the latency measurements that we conducted
previously, those numbers are interesting as they represent the performance of the driver at
maximum CPU utilisation. From those results, we can clearly that the original CoRD version
takes too long to reach the maximum of the bandwidth. The baseline only nearly reaches the

Send/RC Send/UD

1 16 256 4096 1 16 256 4096

0.0

0.5

1.0

1.5

Message size (Bytes)

La
te

nc
y

ov
er

he
ad

 (
µs

) Version

CoRD

No mitigations

Shared region

Fast dispatch

Direct pointer

Figure 5.2: Comparing the overhead of the latency of a round trip using the original CoRD and
the successive combinations of optimisations on system O.

Version/message size 1 16 256 4096
Theoretical max bw 6ns 7ns 25ns 311ns

baseline 99ns 99ns 100ns 352ns
CoRD 1096ns 1094ns 1104ns 1089ns

Optimised 317ns 317ns 320ns 373ns

Table 5.1: Time per packet (in ns) at different message size and with the kernel-bypass version,
CoRD and our optimised version on system L. The first line contains the maximum time per
packet to reach the maximum bandwidth.

maximum bandwidth time per packet for packets of 4KiB. Our optimised version also nearly
reaches it for packets of 4KiB. We can also see that some configurations have a nearly constant
time per packet like the baseline on O and the CoRD version and our optmised version on both
system. This means that the size of the message has no impact on the time per message and
that the processing time is thus dominated by a part that does not depend on the message size.

To conclude, our optimisations had a significant impact on the performance of the driver.
With them, we managed to reduce the latency of up to 65% on system L and of up to 45% on

22

Send/RC Send/UD

2^{0} 2^{4} 2^{8} 2^{12} 2^{0} 2^{4} 2^{8} 2^{12}

0.0

0.5

1.0

Message size

R
el

at
iv

e
th

ro
ug

hp
ut

Version

CoRD

No mitigations

Shared region

Fast dispatch

Direct pointer

Figure 5.3: Comparing the relative maximum bandwidth using the original CoRD and the
successive combinations of optimisations on system L. 1 is the maximum bandwidth reached
by the baseline

system O.
To try to explain the difference in performance improvement between system L and system O,
we believe that system L should be considered as an older system where the CPU is slower
overall than on system O. This is highlighted by the fact that the CPU of system L is more
vulnerable than the one of system L and thus has to execute more mitigations in software.

Version/message size 1 16 256 4096
Theoretical max bw 6ns 7ns 25ns 311ns

baseline 366ns 367ns 368ns 351ns
CoRD 1057ns 1059ns 1060ns 1058ns

Optimised 664ns 661ns 662ns 586ns

Table 5.2: Time per packet (in ns) at different message size and with the kernel-bypass version,
CoRD and our optimised version on system O. The first line contains the maximum time per
packet to reach the maximum bandwidth.

Send/RC Send/UD

2^{0} 2^{4} 2^{8} 2^{12} 2^{0} 2^{4} 2^{8} 2^{12}

0.0

0.5

1.0

Message size

R
el

at
iv

e
th

ro
ug

hp
ut

Version

CoRD

No mitigations

Shared region

Fast dispatch

Direct pointer

Figure 5.4: Comparing the relative maximum bandwidth using the original CoRD and the
successive combinations of optimisations on system O. 1 is the maximum bandwidth reached
by the baseline

Function(s) opti_4 CoRD
entry point of the hardware driver (mlx5_post_send) 12.65% 8.82%
exit point of the core driver (ib_uverbs_post_send) 19.01% 36.48%

entry point of the core driver (ib_uverbs_ioctl) 45.97% 57.8%
entry point of the kernel 68.43% 88.85%

.

Table 5.3: Functions inside the kernel with their corresponding % of CPU time compared
between using the optimised opti_4 driver and the original CoRD on system L.

Since we consider performance improvement, simply removing instructions that require CPU
time plays a significant role in the improvement. For the absence of significant scaling on
system 0, an argument could be that system L involves two directly connected nodes whereas
system O nodes are connected via a switch. This means that the overall latency of a message
will be longer on O. Thus, even the improvements yielded equivalent results on the local nodes,
it would play a smaller role in the overall bandwidth of system O because of the switch.

24

5.3 Discussion and Future work
While the previous section has showed that our optisations managed to reduce the overhead of
CoRD, there is still some parts of the overhead that are unexplained.
First and foremost, we have not reached our goal of reducing the overhead of a driver call to
the overhead of a syscall. The lowest overhead that the driver yields is 700 ns which is still 400
ns more than what [25] has measured as the overhead of a syscall. This means that there is still
some parts that are degrading the performance that we have not found yet as we showed with
the flamegraph of opti_4 in Table 5.3.
We believe that a deeper re-architecting and study of the driver is necessary to this end.

Even if we improved significantly the driver performance, it is still significantly lower than
the kernel-bypass baseline. In order to reach a level of performance equivalent to the base-
line, the overhead of the system call must be removed. However, this requires either to use a
different interface than a syscall or to re-design the syscall interface for this purpose. In both
cases, this would imply solving the problem of designing an efficient yet portable user-kernel
interface in Linux which, as Atlidakis et al. show, is still an open question.

In the future, we also plan on conducting a more complete evaluation of our improved
version of CoRD, especially using more realistic applications than micro-benchmarks.

6
Conclusion

In this work, we explored some of the reasons behind the overhead of CoRD. We conducted
our study by measuring the areas of the Infiniband that were inducing an overhead compared
to the kernel-bypass version that calls directly the hardware driver function. We found 4 parts
on the kernel side that were hindering the performance. The first one is the mitigations of the
Meltdown and MDS security vulnerabilities which add some processing during the return from
kernel to user space. The second one is the copying of memory from user to kernel memory
that we replaced with a shared memory region. The third one is the mechanism of dispatching
inside the driver which is necessary for the compatibility with multiple hardware drivers but is
in turn degrading the performance. The fourth one is the mechanism of protecting the kernel
memory by returning only a handle for the message queues to the user-space library.
With these modifications to the driver, we managed to reduce the overhead of a communication
by up to 65%. However, the overhead is still between 600 and 800ns which is greater than the
overhead of an empty system call. This means that there is still some parts which are degrading
the performance of the driver. Our methodology is not sufficient to find those parts and we
believe that a re-architecting of the driver for this purpose would be necessary. Moreover, in
the goal of bringing the performance of CoRD on par with the performance of kernel-bypass,
the overhead of the syscall has to be removed too. For this, we believe that the current syscall
interface is not suited for this high performance networking purposes. To reach kernel-bypass
level of performance, we believe that a re-architecting of the syscall interface is necessary.

Bibliography

[1] Dpdk website. https://www.dpdk.org/. [Online; accessed 23/08/2023].

[2] Original blog post presenting the flamegraph. https://www.brendangregg.com/
flamegraphs.html. [Online; accessed 16/08/2023].

[3] Github repository containing the libibverbs library. https://github.com/
linux-rdma/rdma-core. [Online; accessed 16/08/2023].

[4] Detail from the Oracle documentation detailing the shapes available. https://docs.
oracle.com/en-us/iaas/Content/Compute/References/computeshapes.htm#
bm-hpc-optimized. [Online; accessed 16/08/2023].

[5] Github repository of the perftest benchmark suite. https://github.com/linux-rdma/
perftest. [Online; accessed 16/08/2023].

[6] TOP500 statistics subpage. https://www.top500.org/statistics/list/. [Online;
accessed 16/08/2023].

[7] Marcelo Abranches, Oliver Michel, Eric Keller, and Stefan Schmid. Efficient Network
Monitoring Applications in the Kernel with eBPF and XDP. In 2021 IEEE Conference
on Network Function Virtualization and Software Defined Networks (NFV-SDN), pages
28–34, November 2021. doi: 10.1109/NFV-SDN53031.2021.9665095.

[8] Vaggelis Atlidakis, Jeremy Andrus, Roxana Geambasu, Dimitris Mitropoulos, and Jason
Nieh. POSIX abstractions in modern operating systems: the old, the new, and the missing.
In Proceedings of the Eleventh European Conference on Computer Systems, EuroSys ’16,
pages 1–17, New York, NY, USA, April 2016. Association for Computing Machinery.
ISBN 978-1-4503-4240-7. doi: 10.1145/2901318.2901350. URL https://dl.acm.
org/doi/10.1145/2901318.2901350.

[9] Jan Bierbaum, Maksym Planeta, and Hermann Härtig. Towards Efficient Oversubscrip-
tion: On the Cost and Benefit of Event-Based Communication in MPI. In 2022 IEEE/ACM
International Workshop on Runtime and Operating Systems for Supercomputers (ROSS),
pages 1–10, November 2022. doi: 10.1109/ROSS56639.2022.00007.

[10] Daniel Firestone, Andrew Putnam, Sambhrama Mundkur, Derek Chiou, Alireza Dabagh,
Mike Andrewartha, Hari Angepat, Vivek Bhanu, Adrian Caulfield, Eric Chung, Har-
ish Kumar Chandrappa, Somesh Chaturmohta, Matt Humphrey, Jack Lavier, Norman

https://www.dpdk.org/
https://www.brendangregg.com/flamegraphs.html
https://www.brendangregg.com/flamegraphs.html
https://github.com/linux-rdma/rdma-core
https://github.com/linux-rdma/rdma-core
https://docs.oracle.com/en-us/iaas/Content/Compute/References/computeshapes.htm#bm-hpc-optimized
https://docs.oracle.com/en-us/iaas/Content/Compute/References/computeshapes.htm#bm-hpc-optimized
https://docs.oracle.com/en-us/iaas/Content/Compute/References/computeshapes.htm#bm-hpc-optimized
https://github.com/linux-rdma/perftest
https://github.com/linux-rdma/perftest
https://www.top500.org/statistics/list/
https://dl.acm.org/doi/10.1145/2901318.2901350
https://dl.acm.org/doi/10.1145/2901318.2901350

Lam, Fengfen Liu, Kalin Ovtcharov, Jitu Padhye, Gautham Popuri, Shachar Raindel,
Tejas Sapre, Mark Shaw, Gabriel Silva, Madhan Sivakumar, Nisheeth Srivastava, An-
shuman Verma, Qasim Zuhair, Deepak Bansal, Doug Burger, Kushagra Vaid, David A.
Maltz, and Albert Greenberg. Azure Accelerated Networking: SmartNICs in the Public
Cloud. pages 51–66, 2018. ISBN 978-1-939133-01-4. URL https://www.usenix.
org/conference/nsdi18/presentation/firestone.

[11] Alvaro Frank, Tim Süss, and André Brinkmann. Effects and Benefits of Node Sharing
Strategies in HPC Batch Systems. In 2019 IEEE International Parallel and Distributed
Processing Symposium (IPDPS), pages 43–53, May 2019. doi: 10.1109/IPDPS.2019.
00016. ISSN: 1530-2075.

[12] Luis Gerhorst, Benedict Herzog, Stefan Reif, Wolfgang Schröder-Preikschat, and Timo
Hönig. AnyCall: Fast and Flexible System-Call Aggregation. In Proceedings of the
11th Workshop on Programming Languages and Operating Systems, pages 1–8, October
2021. doi: 10.1145/3477113.3487267. URL http://arxiv.org/abs/2201.13160.
arXiv:2201.13160 [cs].

[13] Balazs Gerofi, Masamichi Takagi, Atsushi Hori, Gou Nakamura, Tomoki Shirasawa, and
Yutaka Ishikawa. On the Scalability, Performance Isolation and Device Driver Trans-
parency of the IHK/McKernel Hybrid Lightweight Kernel. In 2016 IEEE International
Parallel and Distributed Processing Symposium (IPDPS), pages 1041–1050, May 2016.
doi: 10.1109/IPDPS.2016.80. ISSN: 1530-2075.

[14] Balazs Gerofi, Rolf Riesen, Masamichi Takagi, Taisuke Boku, Kengo Nakajima, Yutaka
Ishikawa, and Robert W. Wisniewski. Performance and Scalability of Lightweight Multi-
kernel Based Operating Systems. In 2018 IEEE International Parallel and Distributed
Processing Symposium (IPDPS), pages 116–125, May 2018. doi: 10.1109/IPDPS.2018.
00022. ISSN: 1530-2075.

[15] Zhiqiang He, Dongyang Wang, Binzhang Fu, Kun Tan, Bei Hua, Zhi-Li Zhang, and
Kai Zheng. MasQ: RDMA for Virtual Private Cloud. In Proceedings of the Annual
conference of the ACM Special Interest Group on Data Communication on the appli-
cations, technologies, architectures, and protocols for computer communication, SIG-
COMM ’20, pages 1–14, New York, NY, USA, July 2020. Association for Comput-
ing Machinery. ISBN 978-1-4503-7955-7. doi: 10.1145/3387514.3405849. URL
https://doi.org/10.1145/3387514.3405849.

[16] Jaehyun Hwang, Midhul Vuppalapati, Simon Peter, and Rachit Agarwal. Rearchitect-
ing Linux Storage Stack for µs Latency and High Throughput. pages 113–128, 2021.
ISBN 978-1-939133-22-9. URL https://www.usenix.org/conference/osdi21/
presentation/hwang.

[17] Toke HÃ¸iland-JÃ¸rgensen, Jesper Dangaard Brouer, Daniel Borkmann, John Fastabend,
Tom Herbert, David Ahern, and David Miller. The eXpress data path: fast programmable
packet processing in the operating system kernel. In Proceedings of the 14th International
Conference on emerging Networking EXperiments and Technologies, CoNEXT ’18, pages
54–66, New York, NY, USA, December 2018. Association for Computing Machinery.

30

https://www.usenix.org/conference/nsdi18/presentation/firestone
https://www.usenix.org/conference/nsdi18/presentation/firestone
http://arxiv.org/abs/2201.13160
https://doi.org/10.1145/3387514.3405849
https://www.usenix.org/conference/osdi21/presentation/hwang
https://www.usenix.org/conference/osdi21/presentation/hwang

ISBN 978-1-4503-6080-7. doi: 10.1145/3281411.3281443. URL https://dl.acm.
org/doi/10.1145/3281411.3281443.

[18] InfiniBand Trade Association. InfiniBand Architecture Specification, volume 1. Infini-
Band Trade Association, 1.3 edition, March 2015. URL https://cw.infinibandta.
org/document/dl/8567.

[19] Daehyeok Kim, Tianlong Yu, Hongqiang Harry Liu, Yibo Zhu, Jitu Padhye, Shachar
Raindel, Chuanxiong Guo, Vyas Sekar, and Srinivasan Seshan. FreeFlow: Software-
based Virtual RDMA Networking for Containerized Clouds. In Proceedings of the 16th
USENIX Conference on Networked Systems Design and Implementation, NSDI, pages
113–125, 2019. ISBN 978-1-931971-49-2. doi: 10.5555/3323234.3323245. event-place:
Boston, MA, USA.

[20] Dmitry Kuznetsov and Adam Morrison. Privbox: Faster System Calls Through Sand-
boxed Privileged Execution. 2022. URL https://www.usenix.org/conference/
atc22/presentation/kuznetsov.

[21] Ilya Lesokhin, Haggai Eran, Shachar Raindel, Guy Shapiro, Sagi Grimberg, Liran Liss,
Muli Ben-Yehuda, Nadav Amit, and Dan Tsafrir. Page Fault Support for Network
Controllers. ACM SIGARCH Computer Architecture News, 45(1):449–466, April 2017.
ISSN 0163-5964. doi: 10.1145/3093337.3037710. URL https://doi.org/10.1145/
3093337.3037710.

[22] Planeta Maksym, Jan Bierbaum, Michael Roitzsch, and Hermann Härtig. CoRD: Con-
verged RDMA Dataplane for High-Performance Clouds. In WORDS 2023.

[23] Michael Marty, Steve Gribble, Nicholas Kidd, Roman Kononov, Gautam Kumar, Carl
Mauer, Emily Musick, Lena Olson, Erik Rubow, Michael Ryan, Kevin Springborn, Marc
de Kruijf, Paul Turner, Valas Valancius, Xi Wang, Amin Vahdat, Jacob Adriaens, Christo-
pher Alfeld, Sean Bauer, Carlo Contavalli, Michael Dalton, Nandita Dukkipati, and
William C. Evans. Snap: a microkernel approach to host networking. In Proceedings of
the 27th ACM Symposium on Operating Systems Principles - SOSP ’19, pages 399–413.
ACM Press, 2019. ISBN 978-1-4503-6873-5. doi: 10/ggcdnx. event-place: Huntsville,
Ontario, Canada.

[24] Sebastiano Miano, Fulvio Risso, Mauricio Vásquez Bernal, Matteo Bertrone, and Yun-
song Lu. A Framework for eBPF-Based Network Functions in an Era of Microservices.
IEEE Transactions on Network and Service Management, 18(1):133–151, March 2021.
ISSN 1932-4537. doi: 10.1109/TNSM.2021.3055676. Conference Name: IEEE Trans-
actions on Network and Service Management.

[25] Till Miemietz, Maksym Planeta, and Viktor Laurin Reusch. New Mechanism for
Fast System Calls, December 2021. URL http://arxiv.org/abs/2112.10106.
arXiv:2112.10106 [cs].

[26] Anastasios Papagiannis, Giorgos Xanthakis, Giorgos Saloustros, Manolis Marazakis, and
Angelos Bilas. Optimizing Memory-mapped I/O for Fast Storage Devices. pages 813–
827, 2020. ISBN 978-1-939133-14-4. URL https://www.usenix.org/conference/
atc20/presentation/papagiannis.

https://dl.acm.org/doi/10.1145/3281411.3281443
https://dl.acm.org/doi/10.1145/3281411.3281443
https://cw.infinibandta.org/document/dl/8567
https://cw.infinibandta.org/document/dl/8567
https://www.usenix.org/conference/atc22/presentation/kuznetsov
https://www.usenix.org/conference/atc22/presentation/kuznetsov
https://doi.org/10.1145/3093337.3037710
https://doi.org/10.1145/3093337.3037710
http://arxiv.org/abs/2112.10106
https://www.usenix.org/conference/atc20/presentation/papagiannis
https://www.usenix.org/conference/atc20/presentation/papagiannis

[27] Ivy Peng, Roger Pearce, and Maya Gokhale. On the Memory Underutilization: Exploring
Disaggregated Memory on HPC Systems. In 2020 IEEE 32nd International Symposium
on Computer Architecture and High Performance Computing (SBAC-PAD), pages 183–
190, September 2020. doi: 10.1109/SBAC-PAD49847.2020.00034. ISSN: 2643-3001.

[28] Maksym Planeta, Jan Bierbaum, Leo Sahaya Daphne Antony, Torsten Hoefler, and
Hermann Härtig. MigrOS: Transparent Operating Systems Live Migration Support
for Containerised RDMA-applications. In USENIX ATC 2021, pages 47–63, July
2021. ISBN 978-1-939133-23-6. URL https://www.usenix.org/conference/
atc21/presentation/planeta.

[29] Hugo Sadok, Zhipeng Zhao, Valerie Choung, Nirav Atre, Daniel S. Berger, James C. Hoe,
Aurojit Panda, and Justine Sherry. We need kernel interposition over the network data-
plane. In Proceedings of the Workshop on Hot Topics in Operating Systems, pages 152–
158, Ann Arbor Michigan, June 2021. ACM. ISBN 978-1-4503-8438-4. doi: 10.1145/
3458336.3465281. URL https://dl.acm.org/doi/10.1145/3458336.3465281.

[30] Lluís Vilanova, Lina Maudlej, Shai Bergman, Till Miemietz, Matthias Hille, Nils As-
mussen, Michael Roitzsch, Hermann Härtig, and Mark Silberstein. Slashing the disag-
gregation tax in heterogeneous data centers with FractOS. In Proceedings of the Seven-
teenth European Conference on Computer Systems, EuroSys ’22, pages 352–367, New
York, NY, USA, March 2022. Association for Computing Machinery. ISBN 978-1-4503-
9162-7. doi: 10.1145/3492321.3519569. URL https://doi.org/10.1145/3492321.
3519569.

[31] Irene Zhang, Amanda Raybuck, Pratyush Patel, Kirk Olynyk, Jacob Nelson, Omar
S. Navarro Leija, Ashlie Martinez, Jing Liu, Anna Kornfeld Simpson, Sujay Jayakar,
Pedro Henrique Penna, Max Demoulin, Piali Choudhury, and Anirudh Badam. The
Demikernel Datapath OS Architecture for Microsecond-scale Datacenter Systems. In
Proceedings of the ACM SIGOPS 28th Symposium on Operating Systems Principles,
SOSP ’21, pages 195–211, New York, NY, USA, October 2021. Association for Com-
puting Machinery. ISBN 978-1-4503-8709-5. doi: 10.1145/3477132.3483569. URL
https://doi.org/10.1145/3477132.3483569.

[32] Yuhong Zhong, Haoyu Li, Yu Jian Wu, Ioannis Zarkadas, Jeffrey Tao, Evan Mesterhazy,
Michael Makris, Junfeng Yang, Amy Tai, Ryan Stutsman, and Asaf Cidon. {XRP}: {In-
Kernel} Storage Functions with {eBPF}. pages 375–393, 2022. ISBN 978-1-939133-28-
1. URL https://www.usenix.org/conference/osdi22/presentation/zhong.

[33] Zhe Zhou, Yanxiang Bi, Junpeng Wan, Yangfan Zhou, and Zhou Li. Userspace Bypass:
Accelerating Syscall-intensive Applications. pages 33–49, 2023. ISBN 978-1-939133-34-
2. URL https://www.usenix.org/conference/osdi23/presentation/zhou-zhe.

32

https://www.usenix.org/conference/atc21/presentation/planeta
https://www.usenix.org/conference/atc21/presentation/planeta
https://dl.acm.org/doi/10.1145/3458336.3465281
https://doi.org/10.1145/3492321.3519569
https://doi.org/10.1145/3492321.3519569
https://doi.org/10.1145/3477132.3483569
https://www.usenix.org/conference/osdi22/presentation/zhong
https://www.usenix.org/conference/osdi23/presentation/zhou-zhe

	Abstract
	Acknowledgements
	Résumé
	Introduction
	Background
	Background
	The Linux kernel
	Infiniband

	Problem statement
	Problem statement
	Related work

	Towards a more efficient Infiniband Linux driver
	Turning off security vulnerability mitigations
	Using shared memory
	Calling the driver functions directly
	Passing the queues pointers from userspace

	Evaluation and Discussion
	Experimental setup
	Evaluation
	Discussion and Future work

	Conclusion
	Bibliography

